

HYDRAULIC TURBOMACHINES

Exercises 1

Hydraulic Energy

1.1 Specific energy loss calculations

Kaplan turbine of Ligga III power station in Sweden could be mentioned as featuring one of the highest capacity for a Kaplan turbine, 182 MW. The layout of the power plant is shown in Figure 1. Technical data are given in Table 1.

For the calculation, use the following values as the gravity acceleration and water density. $g = 9.81 \text{ m} \cdot \text{s}^{-2}$, $\rho = 1000 \text{ kg} \cdot \text{m}^{-3}$

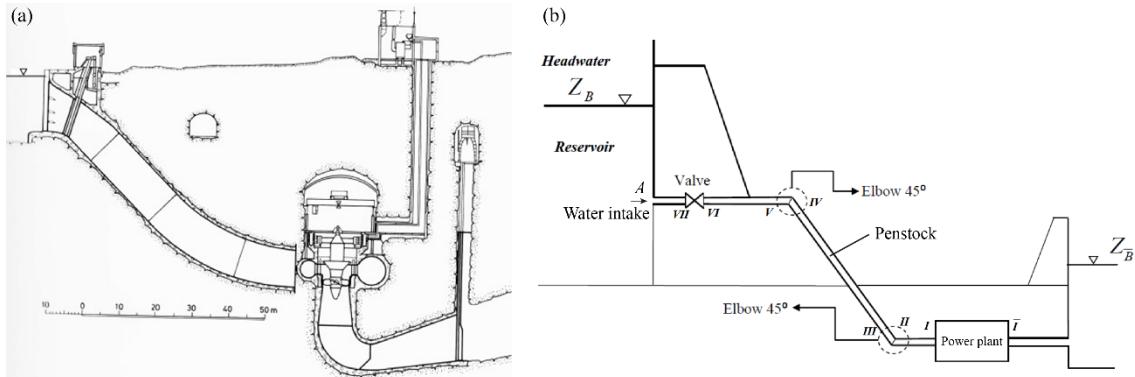


Figure 1 – The meridional view of the Ligga III power plant (a) and the simplified layout of the power plant for specific energy loss calculations (b)

Table 1 Technical data

Data	Symbol	Value	unit
Headwater reservoir level	Z_B	122	(m)
Tailwater level	$Z_{\bar{B}}$	73	(m)
Water kinematic viscosity	ν_w	10^{-6}	($\text{m}^2 \text{ s}^{-1}$)
Rated discharge in the power plant	Q	516	($\text{m}^3 \text{ s}^{-1}$)
Penstock length	L_p	156.1	(m)
Penstock diameter	D_p	7.5	(m)
Roughness	k_s	45×10^{-6}	(m)
Intake loss coefficient*	$k_{r,intake}$	1.0	(-)
Elbow loss coefficient*	$k_{r,elbow}$	0.15	(-)
Valve loss coefficient*	$k_{r,valve}$	0.10	(-)
Number of poles	z_p	72	(-)
Grid frequency	f_{grid}	50	(Hz)
Output Torque	T	20.54	(MNm)

**) with respect to the specific kinetic energy of the penstock*

- 1) Calculate the potential specific energy $gH_B - gH_{\bar{B}}$ assuming that the atmospheric pressure is constant.
- 2) By using the Churchill formula and the energy loss coefficients given in Table 1, calculate the energy losses of the installation $\sum gH_r$ for the rated discharge. The specific energy losses $gH_{r_{T+\bar{B}}}$ in the tail race channel, between \bar{I} and \bar{B} can be neglected.
- 3) Calculate the turbine specific energy E , the net available head H and the hydraulic power P_h for the rated discharge.
- 4) Calculate the rotating frequency of the runner n .
- 5) Calculate the machine power output P and the global efficiency η .

The operating condition of the power plant is modified, with a new discharge value $Q_{new} = 398 \text{ m}^3 \cdot \text{s}^{-1}$ and a new elevation of the headwater reservoir $Z_{B_new} = 135 \text{ m}$.

- 6) Assuming that the specific energy losses of the installation are proportional to the square of the discharge, calculate the new specific energy losses induced by the change of the operating condition.
- 7) For this operating condition, the turbine output power is found to be $P = 210 \text{ MW}$, compute the global efficiency for these new operating conditions.

2 TRASFORMED SPECIFIC ENERGY

Here, the fundamentals of hydraulic power plants and the calculation of the transformed specific energy E , are studied. The general sketch of a hydraulic power plant with a pump-turbine unit is shown in Figure 1. The pump-turbine is operated in the turbine mode at the best efficiency point. The points 1 and $\bar{1}$ correspond to the inlet and the outlet of the turbine, respectively. For the values of the gravity acceleration and density, use the following values;

$$g = 9.81 \text{ m s}^{-2}, \rho = 1'000 \text{ kg m}^{-3}$$

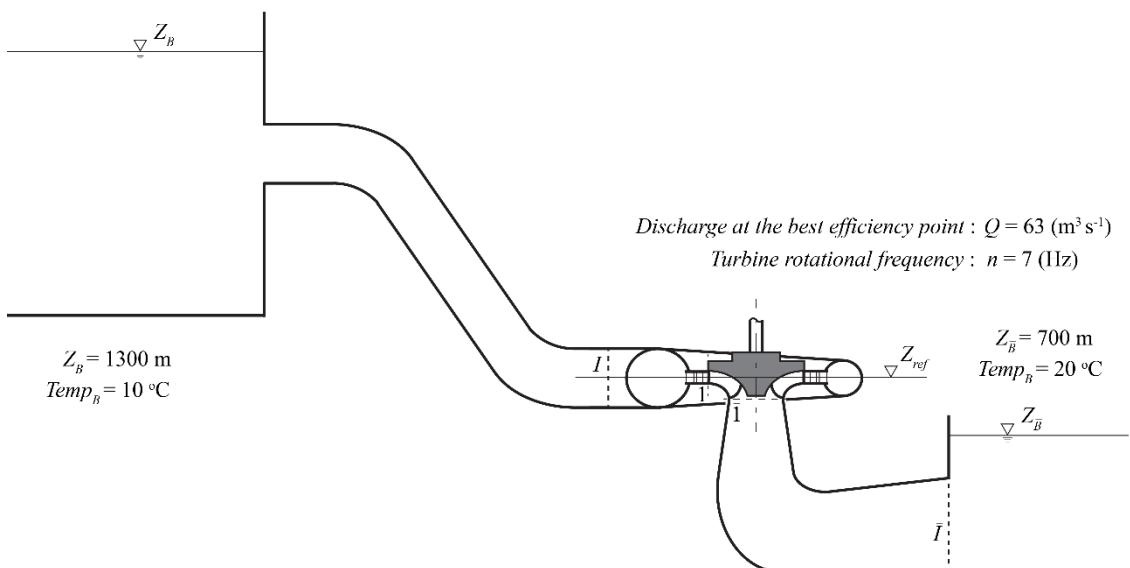


Figure 1 Entire installation of a pump-turbine

- 1) Assuming that an atmosphere pressure p_a is constant, express the potential specific energy $E_{potential}$ by g , Z_B and $Z_{\bar{B}}$. Then, calculate the value.
- 2) For a practical study, the atmosphere pressure changes depending on the altitude and temperature. Considering the change of the atmosphere pressure, express the potential specific energy $E_{potential}$ by g , ρ , Z_B , $Z_{\bar{B}}$, p_{a_B} and p_{a_B} . Then, calculate the value of $E_{potential}$. It should be noted that the atmospheric pressure at an altitude h (m) and temperature T (°C) can be calculated by the following equation.

$$p_a = p_0 \left(1 - \frac{0.0065h}{T_0 + 273.15} \right)^{5.257}$$

$$p_0 = 101.3 \text{ kPa}, \quad T_0 = T + 0.0065h$$

- 3) Express the available specific energy E using necessary variables among $E_{potential}$, $gH_{rB \div I}$, $gH_{rl \div I}$, $gH_{r\bar{I} \div \bar{I}}$, and $gH_{r\bar{I} \div \bar{B}}$.
- 4) Express the transformed specific energy E_t using necessary variables among $E_{potential}$, $gH_{rB \div I}$, $gH_{rl \div I}$, $gH_{r\bar{I} \div \bar{I}}$, and $gH_{r\bar{I} \div \bar{B}}$.
- 5) The transformed power P_t is defined by $P_t = \rho Q_t E_t$. Q_t is the discharge passing through the turbine, and it is lower than the discharge Q . Describe the reason of this.
- 6) The transformed power P_t can be written by the available power P as $P_t = \frac{1}{\eta_{me}} P$ (η_{me} : mechanical efficiency defined by $\eta_{me} = \eta_m \times \eta_{rm}$, where η_m is an efficiency of the bearing and η_{rm} an efficiency of the disc friction). Express the transformed power P_t by the mechanical efficiency η_{me} , global efficiency η , density ρ , discharge Q , available energy E .
- 7) Introducing the volumetric efficiency and the energetic efficiency defined as $\eta_q = \frac{Q_t}{Q}$ and $\eta_e = \frac{E_t}{E}$ respectively, express the global efficiency η by η_e , η_q , η_m , and η_{rm} .
- 8) Assuming that the losses $gH_{rB \div I} + gH_{r\bar{I} \div \bar{B}}$ correspond to 5% of the potential specific energy, calculate the hydraulic power P_h .